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a b s t r a c t

Based on state space method, a three-dimensional (3-D) approach is proposed to study

the size-dependent dynamical properties of micro-structures considering surface

effects. The structure is modeled as a laminate composed of a bulk bounded with

upper and bottom surface layers, which are allowed to have different material

equations, including the surface properties of the structure, can be established to

analyze the size-dependent dynamic responses of the plate-like thin film structures

used in MEMS. To show the feasibility of the proposed approach, a simply supported

plate-like thin structure, including the surface layers, is considered. An algorithm

strategy is proposed for the calculation of the state equations obtained to ensure that

the numerical results can reveal the surface effects clearly even for extremely thin

surface layers. Comparing with the two-dimensional plate theories based size-

dependent models for the thin film structures in literature, the present 3-D approach

is exact, which can provide benchmark results to assess the accuracy of various 2-D

plate theories and numerical methods. Numerical tests prepared for the prediction of

natural frequency are carried out to illustrate the surface effects. Some discussions and

conclusions are presented based on the results of the numerical examples.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It has been received increasing attentions during the last few decades for the importance of surface effects on the
mechanical properties of submicron or nano-scale specimens/structures due to their potential applications of ultra-thin
plate or beam-like structures in micro-electro-mechanical systems (MEMS) and nano-electro-mechanical systems (NEMS)
devices with high sensitivity and high frequency [1–3]. It is known that the surface of a solid is a region with thickness of
several atom diameters, which has its own atom arrangement and property differing from the bulk [4,5]. For a solid with a
large size, the surface effects can be ignored because the volume ratio of the surface region to the bulk is very small.
However, for small-scaled solids with large surface-to-bulk ratio the significance of the surface effects is likely to be
important. For this reason, a better understanding of the mechanical properties of these small elements or structures
including surface effects is one of the fundamental issues in designing and predicting performance of the MEMS/NEMS
devices. Hence, some experimental techniques are developed to measure the material properties for the purpose of
revealing the phenomena of surface effects [6,7]. The performance of the surface can also be altered by some surface
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processing techniques, e.g. ion bombardment [8]. Miyake et al. [9] used atomic force microscopy with a spherical indenter
to evaluate the surface and bulk elastic moduli of thick and thin polystyrene films. These experimental data are very useful
for validating various computational models including molecular dynamics based models [10,11] and continuum elasticity
based models [12]. Wong et al. [13] extended the Zener’s classical work by applying the thermoelastic models to the in-
plane vibration of uniform rings with rectangular cross-section for the purpose of evaluating the energy-dissipation effects
in silicon MEMS resonators. By using a finite element formulation, Yi [14] investigated the effects of geometry on the
energy dissipation induced by thermoelastic damping in MEMS resonators. In the study the perturbation analysis was
applied to derive a linear eigenvalue equation for a silicon ring resonator under mechanical oscillation with an
exponentially decaying rate. The numerical results illustrate that the quality factor (Q-factor) decreases with the radial
width of the ring as a monotonic function. Even though the proposed thermoelastic models can estimate damping of the
MEMS resonators efficiently by the analysis of inherent vibration and the solution of a linear eigenvalue equation, the
analyses were restricted to isotropic material and some simplifications had to be made for anisotropic materials. Hence,
some further improvements might be made in applying the method to analyze laminated structures or problems
considering surface effects.

Although molecular dynamics based methods [10,11] have been increasingly applied to the modeling and simulation of
the nano-materials and nano-structural elements, they are strongly restricted by computational capacities. For MEMS/
NEMS structures and elements with at least one dimension in micro-range, such as micro/nano beam, plates, thin film etc.,
modeling and simulation of their overall physical and mechanical properties is likely to be left to continuum methods.

To incorporate the surface effects in continuum models, Gurtin and Murdoch [15,16] modified the theory of classical
mechanics by modeling the surface as a two-dimensional membrane bonded to the underlying bulk material without
slipping. The presence of surface stresses thus results in a set of non-classical boundary conditions which present the
surface tractions on the bulk substrate in terms of surface stresses and inertia. The non-classical boundary conditions, the
surface stress–strain relations, and the equations of classical elasticity for bulk material together form a coupled system of
field equations. Based on the theory, the analysis of ultra thin beam- or plate-like structural elements have been done by
many researches [12,17–23]. In these studies, the bulk layers of the structures were modeled based on two-dimensional
plate theories. Since the normal stress is assumed to be zero in the classical plate theories, it is found that some of the
interface boundary conditions between the bulk and the surface layers in Gurtin and Murdoch [15,16] cannot be satisfied.
To improve the models, Lu et al. [22] introduced the normal stress inside and on the surface of bulk substrate to satisfy the
constitutive relations on the surface. However, the variation of the normal stress along the thickness inside the bulk
material cannot be determined from the governing equations, and has to be assumed in advance. Furthermore, it should be
pointed out that the thickness of the surface layer was not defined in Gurtin and Murdoch theory, therefore it cannot
undertake bending moment. It may introduce some errors if the thickness of studied film is reduced to its critical length
scale. To account for the effects of complex shear deformations, a continuum refined model coupled with surface elasticity
is proposed by Lü et al. [23] to study the size-dependent elastic behavior of FGM ultra-thin films.

To overcome some difficulties of 2-D models mentioned above, a three-dimensional approach using fundamental
elasticity equations and state space method is applied here to study the thin plate-like structures with surface effects. In
the approach, the structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers,
which are allowed to have different material properties from the bulk layer. This leads to a three-layered laminate model
for simulating the thin plate-like structure with surface effects. Since the 3-D elasticity equations are applied to each layer
and the continuity conditions between the layers are exactly satisfied, the suggested model could be considered as an exact
model comparing with the Gurtin and Murdoch theory based 2-D models. In addition, both isotropic and anisotropic
material properties for bulk and surface layers can be handled equally with the 3-D model, which are not convenient for
the 2-D models.

Since the suggested 3-D model for the thin plate-like structure with surface effects is a direct extension of laminated
structure models, many existed methods and technologies available in literature for the analysis of the 3-D structure
models can be applied. Among these, state space analysis method is an effective approach for solving laminated structures
with arbitrary thickness [24–27]. Based on a mixed representation of elasticity, the state space method converts a
boundary value problem to an equivalent initial value problem in terms of the so-called state variables. Because the
selected state variables are the compatible displacements and stress components at interfaces, the method is very suitable
for the calculation of laminates by using the transfer matrix and recursive solving procedure. For these reasons, the method
is applied in this paper to model the surface effects. To show the feasibility of the proposed model, 3-D analytical solutions
for the free vibration problems of simply supported plate-like thin structures including the surface layers are derived by
using the state space method. An arithmetic strategy is proposed for the calculation of the state equations obtained to
ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical
examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.
2. Fundamental equations

Although the three-layered model provided by Gurtin and Murdoch [15,16] is efficient in evaluating the surface effects,
the model cannot take into account the bending performance of the surface layers. In this section a new three-layered
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model is proposed in which the surface layers can be considered to endure bending deformation and transverse load. State
space method is applied to formulate the problem and transfer matrix method is used to solve the state equation thereafter
for natural frequency prediction. In order to check the effectiveness of the method and compare the numerical results with
that of Ref. [22], formulae for a special case of cylindrical bending are presented.

2.1. General formulations for laminated structures

Consider a thin plate-like structure with thickness h, as shown in Fig. 1. To introduce the surface effects, the plate is
modeled as a three-layered laminate composed of a bulk bounded with upper and bottom surface layers. The two surface
layers are modeled to have their own material properties, and the thicknesses of the two surface layers are defined by h1

and h3, respectively. Therefore, the defined surface layers are allowed both in-plane and out-of-plane deformations, which
may be more reasonable compared with the membrane model in Gurtin and Murdoch [15,16]. The total thickness of the
plate is thus equals to h ¼ h1 þ h2 þ h3.

The coordinate parameters of the plate are denoted with x, y and z, respectively, as shown in Fig. 1, while u, v and w

represent the associated displacement components. The layers of the plate are assumed to have orthotropic material
properties and the principal material axes coincide with the axes of the adopted Cartesian coordinate system. Hence, the
basic equations for any layer of the plate (for example, the bulk layer) can be written as

(a) Stress–strain relations
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txy
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(b) Dynamic equation
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(c) Strain-displacement relations
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8>>><
>>>:

ð3Þ

where Cij are stiffness constants and r is the volume density of the material.
The 3-D equation systems (1)–(3) for elasticity can be solved by state space method. To facilitate the derivation, define

first

C1 ¼ �C13=C33; C2 ¼ C11 � C2
13=C33; C3 ¼ C12 � C13C23=C33; C4 ¼ C22 � C2

23=C33

C5 ¼ �C23=C33; C6 ¼ C66; C7 ¼ 1=C33; C8 ¼ 1=C55; C9 ¼ 1=C44;
Surface
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a
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Fig. 1. Nomenclature of the plate considering surface effects.
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and

a ¼ q=qx; b ¼ q=qy; P2 ¼ r � q2=qt2:

Therefore, from the third equation of Eq. (1) and considering Eq. (3), the following relation can be obtained

qw

qz
¼ C1auþ C5bvþ C7szz: ð4Þ

inserting Eqs. (3) and (4) into Eq. (1), the in-plane stresses can be calculated by
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By substituting Eq. (5) into Eq. (2) and considering Eq. (4) as well as the fourth and the fifth equations of Eq. (1), we can
write the Eqs. (1)–(3) in the following form

q
qz

Rf g ¼ ½G� Rf g; ð6Þ

where

fRg ¼ ½u v w txz tyz sz�
T ð7Þ

is called state vector, and

½G� ¼

0 0 �a C8 0 0

0 0 �b 0 C9 0

C1a C5b 0 0 0 C7

P2 � C2a2 � C6b
2

�ðC3 þ C6Þab 0 0 0 C1a
�ðC3 þ C6Þab P2 � C6a2 � C4b

2 0 0 0 C5b
0 0 P2 �a �b 0

2
6666666664

3
7777777775

ð8Þ

is the system matrix. It can be seen that Eq. (6) is a first-order partial differential equation system with respect to
coordinate z, and the system matrix (8) is independent of z.

The state Eqs. (6)–(8) are written for single layered structures. They can be applied to multilayered structures by
considering interface boundary conditions. The state space equation of the j-th layer of the structure can be written as

q
qz

Rðz; tÞgj ¼ ½G�j Rðz; tÞgj; ðzj�1rzrzj; j ¼ 1;2; . . . ;NÞ;
�n

ð9Þ

where fRgj and ½G�j are, respectively, the state vector and the system matrix for the j-th layer, N is the number of layers of
the laminates, and z0 ¼ 0, zj ¼

Pj
k¼1 hk with hk is the thickness of the k-th layer. Furthermore, the continuity conditions at

interfaces require that

fRðzj; tÞgj ¼ fRðzj; tÞgjþ1; ðj ¼ 1;2; . . . ;N � 1Þ: ð10Þ

Eqs. (9) and (10) are basic equations of the state space method used in this paper for solving the laminated structures.
For specific geometry boundary conditions, the state vectors fRðz; tÞgj can be solved analytically or numerically as can be
seen in Refs. [25–27], and the in-plane stress components can be determined from Eqs. (5).

2.2. Establishment and solution of state equation

To show effectiveness of the proposed 3-D model for studying the thin plate-like structures considering surface effects,
an analytical solutions for a simply supported rectangular layered structure with length a and width b, as shown in Fig. 1, is
obtained based on the state space approach.

Considering the following simply supported boundary conditions at four edges of the plate

x ¼ 0; a : v ¼ sx ¼ 0; y ¼ 0; b : u ¼ sy ¼ 0; ð11Þ

the solutions of displacements and transverse stresses for each layer are assumed to have the form as
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YmnðzÞ sinðxxÞ cosðZyÞ

ZmnðzÞ sinðxxÞ sinðZyÞ
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>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

j

eiot ; ð12Þ
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where x ¼ mp=a, Z ¼ np=b. By the substitution of Eq. (12) into Eq. (9), the following first-order ordinary differential
equations for each pairs of m and n is obtained

d

dz
RmnðzÞgj ¼ ½G�j RmnðzÞgj; ðzj�1rzrzj; j ¼ 1;2; . . . ;NÞ;

�n
ð13Þ

in which

fRmnðzÞgj ¼ ½UmnðzÞ VmnðzÞ WmnðzÞ XmnðzÞ YmnðzÞ ZmnðzÞ�
T
j ; ð14Þ

and

½G�j ¼

0 0 �x C8 0 0

0 0 �Z 0 C9 0

�C1x �C5Z 0 0 0 C7

C2x
2
þ C6Z2 � ro2 ðC3 þ C6ÞxZ 0 0 0 C1x

ðC3 þ C6ÞxZ C6x
2
þ C4Z2 � ro2 0 0 0 C5Z

0 0 �ro2 x Z 0

2
6666666664

3
7777777775

j

: ð15Þ

The Eq. (13) is generally called state equation and its solution can be expressed as

fRmnðzÞgj ¼ e½G�jðz�zj�1ÞfRmnðzj�1Þgj ¼ ½Dmnðz� zj�1Þ�jfRmnðzj�1Þgj ðzj�1rzrzj; j ¼ 1;2; . . . ;NÞ ð16Þ

and in particular, at z ¼ zj,

fRmnðzjÞgj ¼ ½DmnðhjÞ�jfRmnðzj�1Þgj; ð17Þ

where fRmnðzj�1Þgj and fRmnðzjÞgj are the respective values of the state vector at the top and the bottom interfaces of the j-th
layer, and ½DmnðhjÞ�j is the transfer matrix of the j-th layer, which can be calculated either analytically or numerically. Let
l1; l2; . . . ; l6 be the eigenvalues of the matrix ½G�j and ½P�j the matrix composed of the associated eigenvectors, the matrix
½DmnðhjÞ�j thus can be calculated from the following expression

½DmnðhjÞ�j ¼ ½P�j

el1hj

&

el6hj

2
64

3
75½P��1

j ð18Þ

2.3. Natural frequency solution for the laminates

For a free vibration problem, a characteristic equation concerning every matrix ½DmnðhjÞ�j for the laminated plate must be
established and the corresponding eigenvalue solution may be required. The problem is discussed in this section.

The continuity conditions (10) at interfaces can be expressed as

fRmnðzjÞgj ¼ fRmnðzjÞgjþ1; ðj ¼ 1;2; . . . ;N � 1Þ: ð19Þ

By applying Eqs. (17) and (19) recursively, a relationship between the state vectors of the upper and bottom surfaces of the
structure is established as follows

fRmnðzNÞgN ¼ ½A�fRmnð0Þg1; ð20Þ

where

½A� ¼
Y1

j¼N

½DmnðhjÞ�j

0
@

1
A; ð21Þ

and fRmnð0Þg1 and fRmnðzNÞgN are, respectively, the state vectors at the upper and bottom surfaces of the laminate, and the
vector fRmnð0Þg1 is also called initial values.

For the free vibration problem, the traction free conditions on the upper and the bottom surfaces can be expressed as:

½XmnðzNÞ; YmnðzNÞ; ZmnðzNÞ�
T
N ¼ ð0;0;0Þ

T

½Xmnð0Þ; Ymnð0Þ; Zmnð0Þ�
T
1 ¼ ð0;0;0Þ

T

(
ð22Þ

Substituting Eq. (22) into (20) yields the following homogenous equations

a41 a42 a43

a51 a52 a53

a61 a62 a63

2
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Umnð0Þ
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Wmnð0Þ

8><
>:
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¼

0

0

0
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>:

9>=
>;; ð23Þ
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where aij are the relevant elements of matrix [A]. The condition of non-trivial solution for the above equation is
equivalent to

a41 a42 a43

a51 a52 a53

a61 a62 a63

�������
������� ¼ 0: ð24Þ

Eq. (24) is a characteristic equation regarding the frequency o, and is a transcendental equation as can be seen from
Eq. (15). The natural frequencies for every pair of m and n, which are corresponding to different displacement vibration
modes along the thickness direction, thus can be determined by solving Eq. (24).

2.4. Special case: cylindrical bending

Consider a plate with infinitely wide and finite length a that is simply supported at the two sides in width direction. In
special case of cylindrical bending vibration, the displacements, strains and stresses depend on coordinate x only and the
state variables v and sy should be vanished. Under this condition, the Eqs. (12)–(15) become

u

w

txz

sz

8>>><
>>>:

9>>>=
>>>;

j

¼
X

m

UmðzÞ cosðxxÞ

WmðzÞ sinðxxÞ

XmðzÞ cosðxxÞ

ZmðzÞ sinðxxÞ

8>>>><
>>>>:

9>>>>=
>>>>;

j

eiot ; ð25Þ

d

dz
RmðzÞgj ¼ ½G�j RmðzÞgj; ðzj�1rzrzj; j ¼ 1;2; . . . ;NÞ;

�n
ð26Þ

fRmðzÞgj ¼ ½UmðzÞWmðzÞZmðzÞ�
T
j ; ð27Þ

½G�j ¼

0 �x C8 0

�C1x 0 0 C7

C2x
2
� ro2 0 0 C1x
0 �ro2 x 0

2
66664

3
77775

j

: ð28Þ

The solution process of Eq. (26) is same as that described in Sections 2.2 and 2.3.

3. An algorithm for solving state equations including surface layers

Although Eq. (20) is mathematically quite simple, it may introduce some errors when it is directly applied to the
analysis of the surface effects in numerical calculations. Since the coefficient matrix [A] in Eq. (21) is a product of some
transfer matrixes, the solution of Eq. (20) can be non-sensitive to the contributions of the surface parameters if the
thickness of the surface layers is extremely small compared to the bulk layer, which has been verified in our testing
numerical calculations. Therefore, it is necessary to seek a modified approach for the purpose of providing reasonable
results to reveal the surface effects effectively. It is discussed in this section.

Because the thicknesses of the surface layers are in general very small compared with the bulk layer in the proposed
model, the bulk layer can be imaginarily divided into some thin plies, say K plies, so that the values of the transfer matrices
of these plies have reasonable orders compared to those of the transfer matrices of the surface layers. Therefore, the
thickness of each thin ply for the bulk layer is given by D ¼ h2=K, where the required number, K, can be determined
according to the dimensions of the surface layers so that D�h1. Hence, the thin plate-like structure is now considered to
have N=Kþ2 thin plies in total. It is found in numerical calculation, however, that the computational efforts and
accumulated calculating errors will be increased significantly with the K increases. In order to take into account the surface
effects efficiently and correctly, an algorithm strategy is suggested and described below.

The state vector fRmnðzÞgj of the j-th ply defined in (14) can be re-written in the form as

fRmnðzÞgj ¼
UjðzÞ

XjðzÞ

( )
; UjðzÞ ¼

UmnðzÞ

VmnðzÞ

WmnðzÞ

8><
>:

9>=
>;

j

; XjðzÞ ¼

XmnðzÞ

YmnðzÞ

ZmnðzÞ

8><
>:

9>=
>;

j

; ð29Þ

where UjðzÞ is related to the displacement components, while XjðzÞ is related to the out-of-plane stress components.
Therefore, Eq. (17) can be expressed in the following partial matrix form as

UjðzjÞ

XjðzjÞ

( )
¼

Aj

Cj

Bj

Dj

" #
Ujðzj�1Þ

Xjðzj�1Þ

( )
; ð30Þ
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where Aj, Bj, Cj and Dj are all 3�3 partial matrixes relating to the transfer matrix of the j-th ply, or 2�2 partial matrixes for
cylindrical bending problem as can be seen from Eq. (27).

For the case of free vibration, the surface stress conditions on the upper and bottom surfaces can be expressed based on
Eq. (22) as

fX1ð0Þg ¼ f0g; fXNðzNÞg ¼ f0g: ð31Þ

Therefore, by introducing the surface conditions of the top layer to Eq (30) for j=1, the following result is obtained

E1

F1

�I

0

" #
U1ð0Þ

U1ðz1Þ

( )
¼

0

X1ðz1Þ

( )
; ð32Þ

where E1 ¼ A1 and F1 ¼ C1 for j=1. The solutions of the displacements on the upper and bottom surfaces of the top layer
can be obtained from above equation as

U1ð0Þ

U1ðz1Þ

( )
¼

G1

H1

" #
fX1ðz1Þg; ð33Þ

Similarly, by introducing the solutions (33) to Eq (30) for j=2, some unknown displacement and stress vectors can be
expressed according to the stress vector X2ðz2Þ as

E2

F2

�I

0

" #
X1ðz1Þ

U2ðz2Þ

( )
¼

0

X2ðz2Þ

( )
; ð34Þ

where the known coefficient matrixes E2 and F2 can be determined accordingly, and are not written out explicitly here. By
repeating the above process recursively from j=1 to j=N, the following relation is obtained

EN

FN

�I

0

" #
XN�1ðzN�1Þ

UNðzNÞ

( )
¼

0

XNðzNÞ

( )
: ð35Þ

where the matrixes EN and FN are calculated according to the recursive process and their elements are related to frequency
o. By introducing the bottom surface condition in Eq. (31) to Eq. (35), the following 6� 6 homogenous equation is obtained

EN

FN

�I

0

" #
XN�1ðzN�1Þ

UNðzNÞ

( )
¼

0

0

� �
: ð36Þ

which can be used to obtain natural frequencies corresponding to the through-thickness modes for every pair of m and n in
solution (12) or every m in solution (25).

4. Numerical examples

To validate the present method, numerical calculations are carried out and compared with the result of Ref. [22]. As an
example, cylindrical bending vibration problem for a simply supported thin plate with infinitely width and finite length a is
considered. The original material parameters used in Ref. [22] are given in the following

E ¼ 5:625� 1010 N=m2; n ¼ 0:25; r ¼ 3� 103 kg=m3;

l0 ¼ 7� 103 N=m; m0 ¼ 8� 103 N=m; r0 ¼ 7� 10�4 kg=m2: ð37Þ

where E and n are Young’s modulus and Poisson’s ratio for the material of the bulk layer, respectively, l0 and m0 are Lam�e
constants of the surface layer. It is known that the dimension of l0 or m0 is [N/m2], same as that of Young’s modulus.
However, the dimension of l0 or m0 given by Ref. [22] is [N/m] because the thickness of the surface layers were not be taken
into account. Hence, in order to compare the results with that of Ref. [22] the dimensions and values of the Lam�e constants
l0 and m0 should be altered in the present calculation. Assume that the thicknesses of the surface layers are fixed in the
numerical examples, which are defined by h1 ¼ h3 ¼ 1:0� 10�8 m. Considering the thickness of the surface layer, the
equivalent material constants are taken as

E ¼ 5:625� 1010 N=m2; n ¼ 0:25;r ¼ 3� 103 kg=m3

l0 ¼ 7� 1011 N=m2; m0 ¼ 8� 1011 N=m2; r0 ¼ 7� 104 kg=m3; ð38Þ

The span to thickness ratio s ¼ a=h is taken s=10 as that of Ref. [22]. By changing the thicknesses h2 of the bulk layer or h of
the plate-like structure, the effects of the surface layers on the overall mechanical responses of the structure can be studied
accordingly. Furthermore, as discussed in the preceding section, to reduce the possible errors due to numerical calculations,
the bulk layer in the numerical examples is divided into thin plies so that the ratio between the thickness of each thin ply
and the surface layer meets the requirement of D=h1r103. Numerical results indicate that the results obtained under this
condition are satisfied.
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The non-dimensional difference between the first-order frequencies with and without the surface effects is calculated
and illustrated by the following parameter

k ¼
o2

1 �o2
1

o2
1

; ð39Þ

where o1 is the first-order frequency of the plate considering surface effects. The comparison result between present
method and Ref. [22] is shown in Fig. 2. It is indicated that the surface effect revealed by the present method is more
significant than that of Ref. [22] for micro-structures.

Next example is to consider a simply supported square plate-like structure. The material properties for the bulk are
considered to be orthotropic, and the non-dimensional elastic constants are assumed to be

C12=C11 ¼ 0:246269 C13=C11 ¼ 0:0831715 C22=C11 ¼ 0:543103

C23=C11 ¼ 0:115017 C33=C11 ¼ 0:530172 C44=C11 ¼ 0:266810

C55=C11 ¼ 0:159914 C66=C11 ¼ 0:262931

ð40Þ

Since very little data regarding the surface elastic properties can be found in literature, it is assumed in the numerical
examples that the two surface layers have the same non-dimensional elastic constants as described in (40). The differences
of the physical material properties between the bulk and the surfaces are distinguished by the ratio T ¼ CðSÞ11=CðBÞ11 , where the
superscripts S and B denote the surface layer and the bulk layer, respectively. When T=1, the structure is degenerated into a
single-layered classical plate model without considering the surface effects. In addition, the other geometry and material
properties of the plate-like structure in the numerical examples are assumed to be

a ¼ b; rðSÞ=rðBÞ ¼ 1; ð41Þ

where r is the material density.
To assess the surface effects on the dynamic responses of the plate, free vibration of the plate-like structure with the

material properties given above is analyzed with h1 ¼ h3 ¼ 1:0� 10�8 m, h=a ¼ 0:1 and T ¼ 10:0. Fig. 3 shows the

variations of the vibration frequency parameter, O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðBÞ=CðBÞ11

q
, with the ratio h ¼ h=h1, and Fig. 4 shows the variations

of the relative frequency difference ~o ¼ ðOB �OSÞ=OB with the ratio of h for some vibration modes. It is seen that the
influences of the surface effects on the dynamic properties of the structure components become significant when

h=h1o104. It is also noted from Fig. 4 that for the relative frequency difference ~o calculated from the same order vibration
modes but with different pairs of m and n, the influences of the surface effects are almost same.

In summary, the numerical examples show that the surface effects increase with the decrease of the structure size. It
indicates that the 3-D model suggested in the paper can also predict the surface effects for the low-dimensional structures
effectively. Based on the numerical results obtained with the assumed material data, the following observations are
summarized:
(a)
 Surface effects can be ignored reasonably when h=h1Z105, whereas the effects become significant for micro structures
as the ratio of h/h1 decreases.
(b)
 The surface effects on the relative differences of frequencies for different vibration modes are generally non-sensitive to
thickness-span ratio h/a.
(c)
 The solution system based on the state space method and the algorithm strategy proposed can provide an ideal
mathematical tool for the analysis of minute elements that widely used in MEMS/NEMS structures. The present
method can also be used as benchmarks for assessing some other numerical and simplified analytical solutions.
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Fig. 3. Variations of frequency differences for some modes with ratio h ¼ h=h1 for h=a ¼ 0:1.
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5. Discussions and concluding remarks

In the present work, a three-dimensional approach based on continuum elasticity is suggested to study the response of
ultra-thin elastic film structures including surface effects, in which the plate-like element is modeled as a laminate
composed of a bulk bounded with upper and bottom surface layers. The state space method is applied to solve the
laminated structures with arbitrary thickness. An algorithm is presented for the calculation of the state equation to ensure
that the solutions can reveal the surface effects clearly when the thickness of the surface layer is tremendously small. In the
algorithm, every step in the recursive process only needs solving an 6� 6 algebra equations for the bending problem or an
4� 4 algebra equations for the cylindrical bending problem. The coefficients of the algebra equations are determined
automatically step-by-step and the solutions are obtained in a recursive procedure. Meanwhile, the solutions given satisfy
the boundary conditions along all edges of the plate and the continuity conditions at the interfaces of the laminate.
Numerical examples show that the algorithm is effective.
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Fig. 4. Variations of relative frequency differences ~o (percent) for some modes with h for h=a ¼ 0:1.
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Compared with the 2-D plate theory based models for the thin film structures considering surface effects in literature,
the 3-D model suggested in the paper may show some advantages. Since the model is based on 3-D elasticity equations, it
is exact in the extent of continuum model range, and can be used to model the structures with any thickness-span ratios.
The 2-D theory based models can be considered to be the simplifications of the 3-D model, and can only be applied to the
structures with restricted thickness-span ratios. Therefore, the results obtained with the 3-D model can be used to assess
the accuracies and application ranges of various 2-D based theories and methods. In addition, the surface anisotropy
properties and the interface boundary conditions between the surface and the bulk layers can be handled naturally with
the 3-D model, which may encounter some difficulties in the 2-D models.

Although the surface effect included model suggested in the paper is mathematically just a normal extension of
conventional laminate models, it deals with different physical problems. A classical laminate is a structure with many
laminas physically bounded together, while the thin plate-like structure considered here is a single solid but considering
the effects induced by different atom arrangements on the surface region. The influences of the effects on the overall
mechanical responses of large-scale structures still exist but are too small to be considered. In the analysis of small material
structures, however, the surface effects can significantly influence their mechanical properties due to large surface-to-bulk
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ratio as shown in the numerical examples, and thus need to be considered in modeling process. Since the methodology of
modeling structures with surface effects based on continuum theories has received increasing interest in just a few years as
the rapid development of MEMS/NEMS, and various theories and methods are still under exploration, this study attempts
to show that some conventional models can still be extended to this kind of problems effectively if the physics behind the
problems are understood. In addition, the present method can also be extended to solve the surface effects problems of
FGM as that of Ref. [23] with some improvements in the solution process are to be made.
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